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Abstract-Turbulent natural convection in a cavity filled with low Prandtl number fluids is investigated. 
The cavity is either heated from below and cooled from above or heated differentially and the other 
connecting walls are assumed to be thermally insulated. Direct numerical simulations, and two- and 
three-dimensional low Reynolds number k-e turbulence models are used. It is shown that the turbulent 
Prandtl number equal to one or slightly greater than one produces useful results, regardless of the value 
of molecular Prandtl number. A correlation is suggested for the Nusselt number as a function of Ra Pr 
(Boussinesq number) for natural convection in a differentially heated cavity. The flow becomes turbulent 

for Ra Pr > 4.8 x 103. 

INTRODUCTION 

NATURAL convection of liquid metals has been a sub- 
ject of study by nuclear reactor engineers and metal- 
lurgists. Liquid metals are excellent heat transfer 
media. During shut down of a liquid metal cooled 
nuclear reactor, heat transfer from the reactor core 
to the liquid metal coolant takes place by natural 
convection. In severe nuclear reactor accidents heat 
transfer in the molten core debris takes place by buoy- 
ancy driven convection. Natural convection in low 
Prandtl number fluids has undesirable effects in crystal 
growth in the Bridgman bath or Chochrawlski appar- 
atus, because the migration of the impurities by natu- 
ral convection affects the quality of the crystal. Also, 
oscillation of temperature due to instability of the 
buoyant flow of liquid metals induces nonuniform 
cooling at the solidification front. In casting and 
material processing it is very important to keep the 
melt at a uniform temperature during the sol- 
idification in order to decrease the thermal stresses. 
Hence, understanding of the flow and heat transfer in 
liquid metals is essential in many processes including 
those mentioned above. Since the kinematic viscosity 
of a liquid metal is very small and the liquid metal 
containers can be large, the flow is characterized as 
turbulent. Hence, it is very difficult to maintain lami- 
nar flow conditions in practical systems. 

Experimentation with liquid metals is’ difficult, and 
very few experiments with buoyancy driven flow have 
been performed. Transport phenomena in liquid 
metal flows are not as fully understood in comparison 
with the flow and heat transfer in ordinary liquids 
such as air and water. Experimental natural con- 
vection heat transfer data have been correlated as 
functions of the Grashof or Rayleigh numbers. The 
data are limited to laminar flow, and very few data 
are available for the turbulent flow regime [l-5]. 

Natural convection in a differentially heated cavity 
has been studied [6-91. Results showed that the buoy- 

ant flow in a differentially heated cavity can differ in 
essential ways from the flow of ordinary liquids [8,9]. 
Thermal diffusion in a liquid metal is important, and 
the hydrodynamic boundary layer is very thick for 
buoyancy driven flows ; while for ordinary fluids the 
hydrodynamic boundary layers are thin, and the 
maximum velocity of ascending and descending flow 
occurs near the boundaries. Another feature of the 
buoyant flow in a liquid metal is the formation of 
weak secondary circulations in the corners of the 
cavity. Flow separation takes place at the comers, 
because the peaks of ascending and descending vel- 
ocities occur far away from the boundaries, leading to 
formation of secondary circulations in these regions. 
Also, the core of the cavity may contain several sec- 
ondary circulations rotating inside the main circu- 
lation. As discussed elsewhere [8, lo], the first evol- 
ution process of such weak secondary circulation is in 
the upper right-hand corner (near the cold wall) of 
the cavity and by skew symmetry in the lower left- 
hand corner (near the hot wall). The reason that these 
comers are more unstable than the remaining ones is 
that the hot (low density) fluid is below the cold (high 
density) fluid, which produces unstable flows in these 
comers. 

The process of transition to turbulent flow is dis- 
cussed by Mohamad and Viskanta [lo]. The turbulent 
buoyant flow of low Prandtl number fluids has not 
been addressed and is the subject of the present work. 
Currently, the attention of a turbulent modeler has 
been focused on the low Reynolds number (LRN) 
k-e turbulence model and the Reynolds stress trans- 
port term-by-term modeling, and to some extent on 
large scale and direct numerical modeling [ll]. The 
latter modeling process requires extensive computer 
resources and presently is not practical for more rou- 
tine engineering design calculations. The term-by- 
term Reynolds stress approach requires tuning of the 
empirical model constants and requires greater com- 
puter time resources compared to the k-e turbulence 
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aspect ratio. H/L 
Boussinesq number, Ra Pr 
dimensionless frequency, (l/z) 

c’, C’, W dimensionless velocity components 
in t-. r~- and [-directions. 

Greek symbols 

iT 
thermal diffusion coefficient [m’ s ‘1 

temperature difference, (T,, - T,) [K] 

k 
L 
NU 

N% 

r 
Pe 
Pr 
Pr, 
RU 
Re 
t 
T 

Grashof number, /3gH ‘AT/v* 
height of the cavity [m] 
convective heat transfer coefficient 
[Wm-‘K] 
thermal conductivity [W m ’ K ‘1 
length of the cavity [m] 
Nusselt number, hH/k 
spatially averaged Nusselt number. 

-J:, (aVX)l,=o., drl 
pressure [Pa] 

Peclet number. Re Pr 
molecular Prandtl number. v/r 
turbulent Prandtl number. E,,,/E,, 
Rayleigh number. Gr Pr 
Reynolds number 
time [s] 
temperature [K] 

eddy diffusivity of heat [m’ s ‘1 
eddy diffusivity of momentum [m’ s ‘1 
dimensionless z-coordinate, z/H 
dimensionless y-coordinate, y/H 
dimensionless temperature, 

(T- T,)/(T,, - T,) 
I’ molecular viscosity [kg m ’ s ‘1 

Pt turbulent viscosity [kg m ’ s ‘1 
\ kinematic viscosity [m’ s ‘1 

5 dimensionless .u-coordinate, .x/H 

0 density [kg m ‘1 
7 dimensionless time, (It/H’). 

T,,, T, hot and cold wall temperatures [K] Superscripts 

24, I:, )I velocity components in the X-, _r- and time averaged quantities 

:-directions. respectively [m s- ‘1 fluctuating component. 

NOMENCLATURE 

model. For natural convection the Reynolds stress 
term-by-term modeling (algebraic stress model) does 
not produce significantly improved results over the 
LRN k--E turbulence model in average velocities, tem- 
perature and rate of heat transfer predictions [ 121. 

The difference between liquid metal and ordinary 
fluids is the Prandtl number. Liquid metals in general 
have higher thermal diffusivity and lower kinematic 
viscosity compared with ordinary fluids. Hence, it is 
assumed that the only difference between turbulent 
modeling using eddy diffusivity approach (LRN k--E) 
for liquid metals is correctly evaluating the turbulent 
Prandtl number. There is some evidence that the tur- 
bulent Prandtl number should be greater than unity. 
which is usually the value reported for ordinary fluids. 
In this work a review is presented of different models 
which have been suggested for correlating turbulent 
Prandtl number. Then, different flow conditions are 
examined for which the available experimental data 
and numerical results of two- and three-dimensional 
models are evaluated on the bases of experimental 
data and direct numerical simulation results. 

number is a function of the Reynolds number. Prandtl 
number, and flow conditions [13]. However, useful 
results can be obtained by assuming that Pr, is uni- 
form across the flow region [12, 14, 151. A simple 
analysis based on the gradient diffusion model of 
the diffusivity can yield an expression for turbulent 
Prandtl number [14] 

(2) 

Other expressions have been reviewed by Reynolds 
[ 161. For ordinary fluids (Pr > 1) a constant value of 
the order one (Pr, = 0.9-1.0) was used to successfully 
predict the shear and buoyant Rows [ 12, 151. 

Buhr et al. [17] studied mixed convection flow of 
mercury in a vertical pipe and concluded that the eddy 
diffusivity ratio is greater than one. Azer and Chao 
[18] suggested a formula based on the experimental 
work on the flow of a liquid metal through a pipe. 
Lykoudis and Touloukian [19] derived an expression 
for turbulent Prandtl number as a function of the 
molecular Prandtl number 

TURBULENT PRANDTL NUMBER 

The turbulent Prandtl number is the ratio of the 
eddy diffusivity of momentum to the eddy diffusivity 
of the enthalpy (heat) and is defined as 

Pr, = cm/e, (1) 

which is analogous to the definition of molecular 
Prandtl number (Pr = v/a). The turbulent Prandtl 

Pr, ’ 
=$[e_o”‘,P’+~e “‘)JJ++‘..]. 

(3) 

Also, Deissler [20] suggested a formula for Pr, as a 
function of Pr only 

Pr, = {[2.05Pr(l-i$y5]/(l-Pr)j’. (4) 

Cotton et al. [21] tested three formulas suggested by 
Reynolds [ 161 
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Pr, = 1 t lOOPep”’ 
( 

i + 12iRe_ ,,z -0.15 -‘. 
! 

(5) 

Aoki [22] 

pr;’ = 

1 
- o.014Rec.4s pro.2 

(6) 
and Jischa and Rieke [23] 

Prt = 0.9+ prl~:**. 

The tests were for mixed flow in a vertical pipe and for 
Pr < 1 using the low Reynolds number k-e turbulence 
model. The predicted Nusselt numbers showed little 
difference. 

The Soviet literature has indicated that the tur- 
bulent Prandtl number for liquid metals is slightly 
greater than unity [24, 251. Potemkin [26] stated that 
the turbulent Prandtl number is a weak function of 
the molecular Prandtl number for Pr < 1. Similarly, 
Golubev [27] used Pr, = 1 for convective flow of a 
liquid metal with Pr = 0.0053. 

A significant research effort has been, and continues 
to be, devoted to the evaluation of the turbulent 
Prandtl number for liquid metals [28, 291. These 
efforts are based either on experimental work or on 
the scale analysis arguments. The major conclusions 
are that for forced flow the turbulent Prandtl number 
approaches unity as the Reynolds number increases. 
The turbulent Prandd number increases as the molec- 
ular Prandtl number decreases. Also, the turbulent 
Prandtl number increases near the boundaries. All 
these conclusions are for forced flow, and there have 
been no tests for buoyant or mixed flow to show if 
the predictions of the models arc consistent with the 
experimental data using different approaches by 
including in the model both molecular and turbulent 
Prandtl numbers. Finally, most authors have used 
their correlations to show agreement with the exper- 
imental data, without further considering the com- 
parison with results based on turbulent Prandtl num- 
ber of unity or based on simple models. 

ANALYSIS 

Mathematical model 
The geometry under consideration is a rectangular 

box, with y-axis in the vertical direction parallel to the 
gravitational field, and x- and z-axes form a horizontal 
plane. A cavity filled with low Prandtl number fluids 
and either heated from below and cooled from above 
or heated from the left-hand side and cooled from the 
right-hand side. The connecting walls are assumed 
insulated thermally. The equations that govern the 
physics of the flow can be described by Navier-Stokes 
equations (continuity, momentum and energy). 

Assuming incompressible flow, constant thermo- 
physical properties, except for variation of density 
with temperature in the buoyancy force (i.e. the 
Boussinesq approximation is valid), the governing 
equations can be written as [30] 

continuity 

au, o 

-= 

ax, 
momentum 

a(ui) + a(ujut) ap - -=-z+Pr$ 
dT ax, t i 

energy 

(9) 

~+~(UjS)=& g * ( > (10) 
J J I 

Scales of H, H*jcc, cr/H, and AT are used for length, 
time, velocity and temperature, respectively. In the 
direct numerical simulation the above equations are 
solved (i.e. three-dimensional unsteady). The low 
Reynolds number k-E turbulence model used in this 
paper is described in detail by Mohamad and Viskanta 
[31] and need not be repeated. 

For the solution of the above equations it is 
assumed that there is no slip at the boundaries, i.e. 
the velocity component is set to zero at the boundaries. 
Temperature gradient normal to the wall is set to zero 
at the adiabatic boundaries, and the temperature is 
specified for heated and cooled walls. 

Method of solution 
A control volume, finite-difference technique was 

used to solve the model equations with appropriate 
boundary conditions. The SIMPLER algorithm was 
employed to solve the equations in primitive variables 

1321. 
The governing equations are converted to systems 

of algebraic equations through an appropriate inte- 
gration over each control volume of the domain and 
finite-difference approximation of partial derivatives. 
The algebraic equations are solved using a line-by-line 
iterative method coupled with an additive correction 
procedure to speed the convergence. The method 
solves a line of nodes using the tridiagonal matrix 
inversion algorithm and sweeps the domain of the 
integration in different directions along the axes. Fully 
implicit Euler method was used to march the solution 
in time. Very large time steps were used when the 
interest focused on the final steady state solutions. 
When the interest was in the unsteady and transient 
solution, a second-order predictor-corrector scheme 
was used for the time-marching. 

Second order central-difference discretization of the 
diffusive-advective ff ux is used for the spatial deriva- 
tives. Nence, the second-order accuracy is ensured in 
time and space. This minimizes the false diffusion. 
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Table 1. Summary of the simulated cases and number of nodes used 

Model 

Cavity heated from below 2-D. k-t: 
Z-D, k--E. 
2-D. k-s 

3-D, unsteady 
3-D, unsteady 
3-D. unsteady 

Differentially heated cavity 2-D, k-l; 

2-D, k-e 
3-D. k-i--E 

3-D, unsteady 

Pr 

0.022 
0.022 
0.022 
0.023 
0.022 
0.022 

0.022 

0.005 
0.022 
0.023 

However, such a scheme requires very fine meshes and 
small time steps. Therefore, when the high accuracy 
is desired this scheme is preferable over the upwind 

scheme [33]. 
Grid independent results are ensured for the two- 

dimensional model. For three-dimensional models, 
fine meshes are used, but no grid independence tests 
have been carried out due to computer resource avail- 
ability. The number of nodes for each case are sum- 
marized in Table 1. 

RESULTS AND DISCUSSION 

Cavity heatedfrom below 
The flow in a cavity depends on the Rayleigh 

number, Prandtl number and geometrical constraints. 
The flow may become turbulent in a shallow cavity 
filled with a liquid metal just above the threshold value 
(i.e. Ra = 1708) as the experiments of Ahlers and 
Behringer [34] have indicated. The mean temperature 
of the fluid at the core of the cavity is equal to 
the arithmetic average temperature imposed at the 
boundaries, and a major temperature drop takes place 
within the horizontal boundaries. The thickness of 
the thermal boundary layers decreases with increasing 
Rayleigh number and increases with decreasing 
molecular Prandtl number. Experimental data on 
liquid metals are very limited due to the difficulty of 
measurements. Only the average Nusselt number 
[35, 361 or the temporal variation of the temperature 
[37] are available. Mohamad [38] in his experiments 
recorded temperature profiles for liquid gallium in 
a cavity having dimensions 25.4 x 2.54 x 12.7 cm in 
length, height and width, respectively. 

A comparison between the experimental data and 
based on a two-dimensional LRN k--E turbulence 
model (with 131 x 31 nodes and Pr, = 1.2) and the 
three-dimensional full numerical simulation model 
(121 x 31 x 51 nodes) predictions are shown in Fig. 1 
for a cavity filled with gallium (Pr = 0.022) for which 
Ra = 2.46 x 104. The two-dimensional numerical 
model predicts that heat conduction dominates the 
flow at the core of the cavity, while the experimental 

Kn 
Number of 

nodes 

Aspect ratio. 
cavity dimensions 

and comments 

1 x IO6 1 x 10’ 131 x41.151 x51 .?I = l/IO 
2.2 x 10’ 121 x61 A : I/‘2 

2.46 x 1 O4 131 x31 A = 1~10 
2.46 x IO4 121X31X51 IO x 1 x 5 (A7 = 0.001) 

2.2 x 105~2.2 x 10h 31X31X31 2 x I x 2 (AT = 0.005) 
2.2 x 10’ 41 x41 x41 2 x 1 r 2 (At = 0.001) 

2.2 x 105-2.2x 19” 61 x 61, 101 x 101, A = 1 to 1;6 
81x41-151x41 

5 x lo”--5 x IO’ 61 x61 .4 = I 
2.2 x 10’ 31x31 x31 lxlxl 
2.2 x IO’ 31X31X31 lrlrl(A7=0.005) 

_____ __~ 

data suggest that advection contributes significantly 
to the flow. Hence, the discrepancy can be understood 
by the presence of turbulence in the flow and the fact 
that the two-dimensional model suppresses the 
turbulence [39]. Therefore, a three-dimensional nu- 
merical simulation was undertaken to support the 
argument. The results show that the three-dimen- 
sional model predictions agree better with the exper- 
imental data than the two-dimensional model pre- 
dictions. It is interesting to note that the average 
Nusselt number for the 2-D LRN k-6 turbulence 
model and unsteady full 3-D numerical calculations 
are 1.699 and 1.697, respectively. Such agreement is 
evident in Fig. 1, where the temperature gradients at 
the boundaries are the same for both models. 

Table 2 summarizes the average Nusselt numbers of 
the two-dimensional predictions and compares them 
with the available experimental data and correlation. 
The data of Rossby [36] and the predictions of the 
LRN k--E turbulence model underestimate the Nusselt 
number compared with the data of Globe and Drop- 

n I \‘. 
\, ,. 

A 
‘C\ 

. 

-0 , 1 I r 1 

-0 0.2 0.4 0.6 0.8 I 
ii 

FIG. 1. Comparison of predictions of different models with 
experimental data for temperature profile in a cavity heated 
from below, Ra = 2.464~ 10J and Pr = 0.022 (A. ex- 
periments [38] ; -, three-dimensional model prediction ; 

~ -, two-dimensional model prediction). 
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Table 2. Comparison of the 2-D k-e turbulence model pre- 
dictions of the average Nusselt number with available exper- 

imental data for Pr = 0.022 

k-e Globe and Rossby [36] 
Ra model Dropkin [35] for Pr = 0.025 

1 x lo6 3.92 5.20 4.91-5.41 
1 x IO7 8.78 11.21 8.67-9.87 
1 x lo* 21.92 24.15 15.5&18.00 
1 x 109 41.96 52.02 27.82-32.83 

kin [35]; however, the results are within the exper- 
imental uncertainty of the data. 

Direct numerical simulation was carried out for a 
cavity heated from below and filled with a liquid metal 
having Prandtl number of 0.022. (This value is typical 
of liquid gallium.) For mercury the value is 0.025. The 
dimension of the cavity was selected to be 2 x 1 x 2 in 
<-, r]- and [-directions, respectively. A nonuniform 
mesh of 31 x 31 x 31 was adopted. The results for 
Gr = 1 x 10’ (Ra = 2.2 x 10’) showed that the flow is 
periodic with a dimensionless frequency of 12.68. 
Figure 2 shows the temporal variation of the V-vel- 
ocity component at the center of the cavity and the 
corresponding spectral power. The flow becomes quasi- 
periodic as the Grashof number is increased to 
1 x 10’ as revealed in Fig. 3. This figure illustrates the 
temporal variation of the V-velocity component with 
the corresponding power spectra. Figure 4 shows the 
correlation v’u’ and m at the mid-plane of the 
cavity. The Reynolds stress V’B’ has a maximum near 
the horizontal boundaries and drops to a minimum 
at the center of the cavity. This suggests that the 
temperature fluctuation is mainly created by the eddy 
motion. The stress V’U’ is maximum at the center of 
the cavity. 

50 

v 0 

Results of direct numerical simulations for Gr = 

1 x 10’ (Pr = 0.022) are presented in Fig. 5, which 
shows the plot of temporal variation of V-velocity at 
the center of the cavity with the corresponding power 
spectra. The time-averaged temperature profiles com- 
pare very well with the predictions of the two-dimen- 
sional LRN k-e turbulence model (Fig. 6(a)). The 
results also confirm the formation of a thin shear layer 
near the horizontal boundaries (Fig. 6(b)). Peak-to- 
peak temperature variation at the center of the cavity 
is very significant (about 40% of the applied tem- 
perature difference along the boundaries), and this is 
revealed in Fig. 7(a). The Reynolds stresses V’B’ and 
V’U’ are shown in Fig. 7(b). The - V’U’ stress term 
has a maximum at the center of the cavity, but V’B’ 
has two maxima at the horizontal boundaries which 
decrease to a minimum at the core of the cavity. The 
power spectra suggest that the flow is dominated by 
the large eddies associated with small eddies. 

D@erentiaIly heated cavity 
Experiments on differentially heated cavities and 

at high Rayleigh numbers filled with liquid metals 
are very limited. Most studies have been done in the 
laminar or the transition regimes. Viskanta et al. [6] 
reported experimental data for temperature profiles 
in a cavity filled with gallium (Pr = 0.0208) for 
Ra = 1.08 x 106. Also, Wolf et al. [7] measured tem- 
perature profiles in a cavity filled with liquid tin 
(Pr = 0.011) for Ra = 3.66 x 105. Their results show 
that the flow is fluctuating, but no further analysis was 
carried out to identify if the flow was fully turbulent. 
However, a two-dimensional LRN k-6 turbulence 
model was used to simulate natural convection flow 
and heat transfer in a differentially heated cavity hav- 
ing an aspect ratio of one and filled with a liquid. 
A nonuniform mesh grid of 61 x 61 was used and 

1 .s 

P.S. 1 

0.5 

-0 I 
-0 20 40 60 80 1 

f 

I I I 
2 4 6 

7 

FIG. 2. V-velocity variation with time and corresponding power spectra for a cavity heated from below for 
Ru = 2.2 x 10’ and Pr = 0.022. 



2820 A. A. MOHAMAD and R. VSKANTA 

100 

50 

V 
0 

-50 

-100 

80 

60 

P.S. ‘$0 

20 
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FIG. 3. v-velocity variation with time and corresponding power spectra for a cavity heated from below for 
Ra = 2.2 x IO6 and Pr = 0.022. 

FIG. 4. Reynolds stress correlation profiles for cavity heated from below, Ra = 2.2 x IO” and Pr = 0.022. 
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FIG. 5. V-velocity variation with time and corresponding power spectra for a cavity heated from below for 
Ra = 2.2 x 10’ and Pr = 0.022. 

.a - 

.6 - 

n 

FIG. 6. Temperature profiles at the center of the cavity predicted by different models (a) and U-velocity 
profile at the center of the cavity (b) predicted by different models for Pr = 0.022 and Ra = 2.2 x lo7 ; -, 

3-D unsteady ; - - -, 2-D k-s model, Pr, = 1.2 ; . . . ., 2-D k-s model, Pr, = 1.4. 
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.6 

e 

.5 

im e’v’ 
FIG. 7. Variation of temperature with time at the center of the cavity (a) and Reynolds stress components 

(b) for cavity heated from below with Rn = 2.2 x lo7 and Pr = 0.022. 

Pr, = 1.2 was employed. A comparison of the results 
of the simulation with the experimental data is given 
in Fig. 8 and shows good agreement. The flow struc- 
ture for Pr = 0.011 and Ra = 3.66 x 10’ reveals 
weak secondary circulations at the corners of the 
cavity, in addition to the main circulation [7]. For 
Ra = 1.08 x lo6 and Pr = 0.0208, the flow structure 

contains secondary circulations inside the main 
circulation. 

A direct numerical simulation was carried out for 
a cubic cavity of 1 x 1 x 1 in t-, q- and c-directions 
with Gr = 1 x lo9 and Pr = 0.022. A dimensionless 
time step of 0.005 was used and a 31 x 31 x 31 non- 
uniform mesh was employed. The temporal variation 
of the Nusselt number at the vertical walls is shown 
in Fig. 9. The results indicate that the transient period 
is very short (T < 0.2), and the flow fluctuates around 
an average Nusselt number of 13.68. 

The results of the 2-D and 3-D LRN k-c turbulence 
models using Pr, = 1.2 are compared with direct 
numerical simulations (Fig. 10). It is clear that the 
agreement between the three model predictions is con- 

sistent. Inspecting the flow field showed that the flow 
is two-dimensional except near the boundaries. The 
flow structure consists of three secondary circulations 
inside the main circulation (Fig. 11). Increasing the 
Rayleigh number increases the complexity of the flow, 
and this is evident from Fig. 11. A similar conclusion 
can be drawn for Pr = 0.005, where the flow structure 
showed a similar pattern at the same Bo. 

The spatial and temporal average Nusselt number 
for the Rayleigh number range between 5 x 10’ and 
2.2 x 10’ and the Prandtl number range from 0.022 to 
0.005 investigated can be best-fit to the correlation 
(Fig. 12) of the form 

Nu,, = 0.386B0~,‘~~. (11) 

The above correlation is for heat transfer in a cavity 
having an aspect ratio of unity. Extensive calculations 
were carried out for cavities having aspect ratios of 
l/2, l/4 and l/6 using mesh sizes ranging from 8 1 x 41 
to 151 x 41. Accordingly, the above correlation can 
be modified as 

Nu. Cl” = 0.386B,~O.*~~ A”.*13 (12) 
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FIG. 8. (a) Comparison of experimental data [6] with predictions for a differentially heated cavity 
with Ra = 1.08 x lo6 and Pr - 0.0208. (b) Comparison of experimental data [7] with predictions for a 

differentially heated cavity with Ra = 3.66 x lo5 and Pr = 0.011. 

-0 f I t I I 

-0 0.2 0.4 0.6 0.8 
z 

FIG. 9. Temporal variation of Nusseh number at the vertical walls for Ra = 2.2 x 10’ and Pr = 0.022: 
solid line is for the heated wall and the dashed line is for the cold wall. 

0.8 - 3-D unsteady 

0.6 

B 

0.4 

0.2 

-0 
-0 0.2 0.4 0.6 0.8 1 

4 

FIG. 10. Comparison of temperature profiles at the mid- 
height of the differentially heated cavity for Ra = 2.2 x IO’ 

and Pr = 0.022. 

to account for the aspect ratio. Laminar natural bon- 
vection flow and heat transfer in a cubic cavity has 
been investigated [6, 8, 91. Mohamad and Vislcanta 
[8,9] used a very fine mesh and second-order accurate 
numerical scheme in their numerical calculations. 
Their predicted average Nusseh numbers for the range 
of Prandtl number investigated (0.01~.~5) can be fit 
by the following correlation : 

Nu,, = I.OS?O~.‘~*. (13) 

This correlation is plotted in Fig. 12 and intersects 
the correlation (equation (11)) for turbulent flow 
results at Bo = 4.8 x 103. Hence, it is assumed that the 
flow in a cubic cavity heated from a side becomes 
turbulent for BQ > 4.8 x lo3 for low Prandtl number 
fluids. 
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a) Streamlines 

b) Streamlines 

c) Streamlines 

. 
- 

a) Isotherms 

b) Isotherms 

< ----; 

c) Isotherms 
FIG. 11. Streamlines and isotherms for differentially heated cavity for Pr = 0.022: (a) Ra = 2.2 x lo’, 

(b) Ru = 2.2 x 10’ and (c) Ra = 2.2 x 109. 
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FIG. 12. Nusselt number correlations for a differentially 
heated cavity. 

CONCLUSJONS 

Turbulent natural convection flow in cavities 
heated from below and cooled from above or heated 
differentially and filled with low Prandtl number fluids 
are investigated, Direct numerical simulations and 
two- and thr~-dimensional LRN k-E turbulent 
model predictions are compared with available exper- 
imental data. Results revealed that using turbulent 
Prandtl number of one or slightly greater than one in 
the k-e turbulence model can produce useful results 
regardless of the molecular Prandtl number. These 
results are supported by direct n~erica1 simulations 
and by available experimental data. 

Buoyant flows in cavities heated from below are 
three-dimensional in nature, but the heat transfer 
predicted by the two-dimensional LRN k-n turbu- 
lence model are comparable with the available exper- 
imental data. The flow is periodic for Rd = 2.2 x 10’ 
with Pr = 0.022 for a cavity heated from below and 
becomes aperiodic for Ra > 2.2 x 106. Very thin shear 
layers are evident at the horizontal boundaries of the 
cavity heated from below. 

The flow in a differentially heated cavity is two- 
dimensional, except very near the boundaries, where 
evidence of three-dimensionality is weak. Heat trans- 
fer results can be correlated as a function of Bo 
(= Ra Pr). Hence, a correlation was suggested for tur- 
bulent flow in a differentially heated cavity of aspect 
ranges from 1 to l/6 and for the range of the parameter 
investigated (Ru 3 5 x IO3 and Pr = 0.022-0.005) 

I-vu,, = 0.386B0”=~ A”.2’3. (14) 

Also, the results of Mohamad and Viskanta [8] are 
correlated for laminar flow. The intercept of the two 
correlations suggests that the buoyant flow in differ- 
entially heated cavities of aspect ratio of unity become 
turbuient for Bo > 4.8 x 103. 

REFERENCES 

1. D. V. Julian and R. G. Akin, Ex~~rnen~l investigation 
of natural convection heat transfer to mercury, I & EC 
Fundam. 8,641-646 (1969). 

2. D. D. Papailiou and P. S. Lykoudis, Turbulent free 
convection flow, ht. J. Heat Mass Transfer 17, 161-172 
(1974). 

3. W. W. Humphrey and J. R. Welty, Natural convection 
with mercury in a uniformly heated vertical channel 
during unstable laminar and transitional flow, Am. fnd. 

4. 

9. 

IO. 

II. 

12. 

13, 

14. 

15. 

16. 

Chem: Engng J. 21,26&274 (1975). 
N. Sheriff and N. W. Davies, Liquid metal natural con- 
vection from plane surface: a review including recent 
sodium measurements, Int. J. Heat Fluid Flow 1, 149- 
154 (1979). 
M. Uotani, Natural convection heat transfer in ther- 
maliy stratified liquid metal, J. Nuci. Sci. Technol. 24, 
4421151 (1987). 
R. Viskanta, D. M. Kim and C. Gau, Three-dimensional 
natural convection heat transfer of a liquid metal in a 
cavity, Int. J. Heat Mass Transfer 29,475485 (1986). 
F. Wolff, C. Beckermann and R. Viskanta, Natural con- 
vection of liquid metals in vertical cavities, Exp. Thermal 
Fluid Sci. 1,83-91 (1988). 
A. A. Moh~ad and R. Viskanta, Transient natural 
convection of low Prandtl number fluids in a differ- 
entially heated cavity, Int. J. Numer. Meth. Fluids 13, 
61-81 (1991). 
A. A. Mohamad and R. Viskanta, Transient low Prandtl 
number fluid convection in a lid-driven cavity, Numer. 
Heat Transfer 19, 187-205 (1991). 
A. A. Mohamad and R. Viskanta, Transition to chaos 
in a differentially heated square cavity filled with a liquid 
metal. In Advanced Com~utatjonaZ Methods in Heat 
Transfer, Vol. 2: Natural and Forced Convection, Proc. 
First Int. Conf. (Edited by L. C. Wrobel, C. A. Brebbia 
and A. J. Nowak), pp. 159169. Computational Mech- 
anics Publications, Southampton (1990). 
I. Celik, T. Kobayshi, K. N. Ghia and J. Kurokawar, 
Editors, Advanceswin Numerical Simulation of Tarbu~ent 
Fiows (Proc. First ASME~JSME Fluid Ena~neer~~ 
Co&, Portland, Oregon, 23-27 June 199 1). ASME, New 
York (1991). 
J. A. C. Humphrey, F. S. Sherman and W. M. To. 
Numerical simulation of buoyant turbulent flow, Sandia 
National Laboratories, Report 85-8180 (1985). 
C. J. Lawn, Turbulent temperature fluctuations in liquid 
metals, fnt. J. Heat Mass Transfer 20,1035-1044 (1977). 
A. J. Reynolds, Turbulent Flows in Engineering. Wiley, 
New York (1974). 
N. Z. Ince and B. E. Launder, On the computation of 
buoyancy-driven turbulent flows in rectangular enclos- 
ures, Znt. J. Heat Fluid Flow 12, 110--l 17 (1989). 
A. J. Reynolds, The prediction of turbulent Prandtl and 
Schmidt numbers, ht. J. Heat Mass Transfer IS, 1055- 
1069 (1975). 

17. H. 0. Buhr, A. D. Carr and R. E. Balzhiser, Temperature 
profiles in liquid metals and the effect of superimposed 
free convection in turbulent flow, Inf. J. Heat Mass 
Transfer l&641-654 (1968). 

18. N. Z..Azer and B. T. Chao, A mechanism of turbulent 
heat transfer in liquid metals, fnt. J. Heat Mass Transfer 
I, 121-138 (1960). 

19. P. S. Lykoudis and Y. S. Touloukian, Heat transfer in 
liquid metals, Trans. ASME 80.653667 (1958). 

20. R: G. Deissler. Turbulent heat transfer and temperature 
fluctuations in a field with uniform velocity and tem- 
perature gradients, Int. J. Heat Mass Transfer 6, 257- 
270 (1963). 

21. M. A. Cotton, J. D. Jackson and L. S. L. Yu, Application 
of a low-Reynolds-num~r two-equation turbulence 
modei to mercury and sodium flows in the turbulent 
mixed convection regime. In Seventh Symposium on Tur- 



2826 A. A. MOHAMAD and R. VISKANTA 

bulent Shear Flows, Stanford University, 21-23 August, 
pp. 20.5.1~20.5.6 (1989). 

22. S. Aoki, A consideration on the heat transfer in liquid 
metal, Bull. Tokyo Inst. Technol. 54, 63-73 (1968). 

23. M. Jischa and H. B. Rieke, Turbulent heat transfer. In 
Recent Contributions to Fluid Mech. (Edited by W. 
Hasse). Springer, New York (1983). 

24. E. Yu. Krasil’nikov, The effect of a transverse field on 
convective heat transfer in a conductive-fluid duct flow. 
In Magnetohydrodynamic Flow in Ducts (Edited by H. 
Branover). Wiley, New York (1978). 

25. A. S. Monin and A. M. Yaglom, Statistical Fluid Mech- 
anics: Mechanics of Turbulence. Vol. I. MIT Press, 
Cambridge, MA (1965). 

26. V. F. Potemkin, Universal profi!es and law of turbulent 
near-wall heat and mass transfer, J. Engng Phys. 55. 
5455553 (1988). 

27. V. V. Golubev, Approximate solution of a problem of 
convective heat transfer between a plate and liquid 
metals, J. Engng Phys. 57, 253-258 (1990). 

28. R. A. Antonia and J. Kim, Turbulent Prdndtl number 
in the near-wall region of a turbulent channel flow, Inr. 
J. Heat Muss Transfer 34, 1905-1908 (1991). 

29. K. Bremhorst and L. Krebs, Experimentally determined 
turbulent Prandtl numbers in liquid sodium at low 
Reynolds numbers, ht. J. Heat Mass Transfer 35, 
351.-359 (1992). 

30. R. B. Brid, W. E. Stewart and E. Lightfoot, Transport 
Phenomena. Wiley, New York (1960). 

31. A. A. Mohamad and R. Viskanta, Application of low 
Reynolds number k--E turbulence model to buoyant and 
mixed flows in a cavity. In Fundamentals ofMixed Con- 
wction (Edited by T. S. Chen and T. Y. Chu). pp. 43 
54. ASME, New York (1992). 

32. S. V. Pdtdnkar. Numerical Heat Truns/cr und Fluid ,%,I 
Hemisphere, New York (1980). 

33. P. J. Roache. Computational Fluid Dynamics. Hermosa. 
Albuquerque. New Mexico (1976). 

34. G. Ahlers and R. P. Behringer. The Rayleigh -Benard 
instability and the evolution of turbulence. In Srrp- 
plemenr of the Progress of Theoreticul Physics. No. 64. 
pp. 186-201. Physical Society of Japan, Tokyo (1978). 

35. S. Globe and D. Dropkin. Natural convection heat 
transfer in liquids confined between two horizontal 
plates, J. Heut Tran& 81,2429 (1959). 

36. H. T. Rossby. A study of Benard convection with and 
without rotation, J. Fluid Mech. 36, 309- 335 (1969). 

37. S. Fauve. Competing instability in Raylcigh-Btnard 
convection. In Current Trends in Turbulent Resr~zrch. 
Progrrsr in dstronautics and Acronuutic,.~ (Edited by H. 
Branover. M. Mond and Y. Unger). pp. 65 77. AIAA. 
Washington, DC (1988). 

38. A. A. Mohamad, Mixed convection in lid-driven 
shallow cavities, Ph.D. Thesis, Purdue University, West 
Lafayette, Indiana (1992). 

39. J. W. Deardorff and G. E. Willis, The effect of two- 
dimensionality on the suppression of thermal turbulence, 
J. Fluid Mech. 23, 337-353 (1965). 


